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Abstract 
There is a trend  towards the increased  use of automation 
in V& V. Automation can yield savings in time and effort. 
For  critical  systems,  where thorough V& V is  required, 
these savings can be  substantial. 
We  describe a progression @om pilot studies to 
development  and  use of  V& V automation.  We  used pilot 
studies to ascertain  opportunities for, and suitability oJ 
automating various  analyses  whose results would 
contribute to V&  V. These  studies culminated in the 
development of an  automatic  generator of automated  test 
oracles.  This was then applied and extended in the course 
of testing an AI planning system that is a key component 
of an autonomous  spacecrafi. 
Keywords:  Test  Oracles,  VerlJication and Validation, 
Analysis, Planning,  NASA 

1. Introduction 

Cost,  performance  and functionality concerns  are 
driving  a  trend  towards use of self-sufficient autonomous 
systems in place  of  human-controlled  mechanisms. 
Verification  and  validation  (V&V) of such  systems is 
particularly crucial given that they will operate  for  long 
periods  with little or  no  human  supervision.  Furthermore, 
V&V  must itself be  done at low cost, rapidly  and 
effectively, even as the  systems to which it is applied 
grow in complexity  and sophistication. 

Spacecraft - especially  deep  space  probes - exemplify 
these  concerns. We have  been  involved in V&V  of an  AI 
planner that is a  key  component  of  a spacecraft’s 
autonomous  control  system.  In [8] we report  our  use  of an 
automated  generator  of  automated test oracles to support 
these  V&V activities. The  paper is organized to show  the 
progression  of steps we  followed  leading  up  to this 
application, and  the  lessons we have learnt by reflecting 
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upon our  experience: 
First pilot study: rapid  automated analysis (Section 2). 

In this study we determined  the viability of  a  rapid 
analysis  approach. We did  case studies of two kinds of 
traditional design  information,  yielding  confirmation of 
the viability of the analysis  method for this kind  of 
information. 

Second pilot study: application  to an autonomous 
planner  (Section 3). We needed this second  study to 
determine suitability of  the  rapid analysis approach to, 
specifically, checking  plans  generated  by an  AI planner. 
Particular concerns  were scalability of the approach,  and 
investment  of  domain experts’ time. The pilot study 
produced  instances  of  automatic test oracles. 

Development  of  automated  generator  of  planner test 
oracles (Section 4). Based on the  lessons  learned  from 
the  second pilot study, we committed to developing  a 
tool to  be  used in actual spacecraft testing. The tool 
would go beyond the capabilities of the second pilot 
study  by  both  extending  aspects  of  the  analyses 
performed,  and  automating  the  generation  of  the test 
oracles  themselves. 

Application to V&V of  spacecraft  planner  (Section 
5). We applied  the tool during  spacecraft  planner testing. 
Using it, we  checked  thousands  of test cases for 
adherence to hundreds  of flight rules. Additionally,  we 
extended it to perform additional validation  checks  of 
particularly complex rules. 
Lessons  learned  (Section 6) .  We  describe  lessons 
learned  for  both  software  engineering  and  V&V: 

Our experience re-iterates  several  well- 
understood  virtues of pilot studies  as a precursor 
to actual  development. 
When domain experts ’ time  is a critical resource, 

follow  an “on-demand” policy of knowledge 
acquisition. 
V&V can make  good  use of redundancy and 
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rationale, to increase  assurance in the V& V 
results, and to assist in the development of the 
V& V technology  itselJ: 
The  use  of a database as the underlying  analysis 
engine has practical applications  and benejts. 
Test  oracles  should yield results  with far more 
content and structure than simply ‘passed” or 
‘tfailed”. 
Translation between  notations is a recurring 
need, and ideally  should  be  done in such a way 
as to support understanding, specflcation and 
maintenance by domain  experts. 

Conclusions (Section 7). We summarize the 
relationship of our work to other efforts, and point to 
areas we believe  are worthy of additional attention. 

Further  details of the second pilot study  (Appendix 
A). 

Further  details of the development (Appendix B). 

2. First pilot study:  rapid  automated 
analysis 

The first stage  was  a pilot study that investigated 
analysis of simple properties of spacecraft  designs.  This 
was  conducted in early 1997, primarily by the first author 
who,  while not an expert in spacecraft, had  access to 
spacecraft  design documents and  spacecraft  experts.  The 
purpose of this first study was  to answer the following 
question: 

Could  simple  analyses of spacecraft  design 
information  be  performed  rapid&  by  using a 
database as the  underlying  reasoning  engine? 

The  approach under investigation was  founded upon 
the use of a database as the underlying reasoning  engine. 
We used AP5 [3], a research-quality advanced  database 
tool  developed  at  the University of Southern California. 
The  architecture of this approach is shown in Figure 1 .  Its 
four main  steps  were: 
1. Manual creation of a  database schema to represent the 

design information. 

2. Loading the design information into the database. 
This was  made  a predominantly automated operation, by 
constructing special-purpose programs to extract 
information from design documents and translate into 
the format of the  database schema. Automation made the 
approach practical for handling voluminous amounts of 
design information. 

3.  Determining V&V conditions and expressing them as 
database queries. 

4. Analysis, performed by evaluating the V&V 
conditions as  database queries against the data. The 
reporting of the query results was organized into 
confirmations and anomaly reports 

The pilot study examined two sets of design documents 
- interface diagrams (i.e., summaries of incoming and 
outgoing connections of software modules) and test logs 
(i.e., traces of behaviors generated in testing of the 
software components in simulations). Modest verification 
conditions  were rapidly and successfully analyzed in this 
manner. 

2.1. Conclusions drawn from first pilot study 

Overall, the pilot study answered its original question 
affirmatively. 

The database  could readily be used to represent 
existing design information, and populating the 
database with that information could  be automated with 
little effort. 

Database queries  could be used to perform simple 
analyses. The creation of these queries was a relatively 
straightforward, albeit manual, task. 

The efficiency of the database was sufficient for the 
volume of information dealt with in these pilot studies. 
However, questions remained  about the scalability of 
the approach. In particular, checking properties of very 
large log files was anticipated to require a more 
efficient encoding of those properties. A state-machine 

I 

L 

I DOCUMENT I 
Database schema 

f . Manually  created 

7 DATABASE I+ 

design 
information 

2. Automatic, or 
semi-automatic 
loading of 
database 

lata 
Database queries ~ 

Query results (confirmations or anomalies) 
Figure 1 - Architecture of First  Pilot  Study 

based approach, e.g., [2] or [5] would 
perhaps  be more appropriate in such 
circumstances. 

For  further details see [7]. 

3. Second pilot study: V&V of 
an autonomous planner 

The  need arose to perform V&V of 
autonomous  spacecraft control systems. 
The rapid analysis approach of the first 
pilot study  was identified as having 
potential application here. A second pilot 
study was conducted  to investigate this 
potential. This  section  provides some 
background on the  autonomous spacecraft, 
and then summarizes the study. 



3.1 An Autonomous Spacecraft 

NASA’s “New Millennium” series of spacecraft is 
intended to  evaluate promising new technologies  and 
instruments. The first of these, “Deep Space 1” (DSl) [6], 
was launched in 1998. Increased autonomy is one of 
several innovative goals that DS-1 will demonstrate [12]. 
The “Remote Agent” [ 10, 111 will  be the first artificial 
intelligence-based autonomy architecture to reside in the 
flight processor of a  spacecraft  and control it for  6  days 
without  ground  intervention. The Remote Agent  achieves 
its high level of autonomy by using an architecture with 
three key modules: 
0 an integrated planning  and  scheduling system that 

generates  sequences of actions (plans) from high- 
level goals, 
a intelligent executive that carries  out those actions 
and can respond to execution time anomalies, and 
a model-based identification and recovery system that 
identifies faults and suggests  repair strategies. 

The  planner is a critical component of the autonomy 
architecture. The command  sequences generated by the 
planner direct navigation, attitude control, power 
allocation, etc.  The  entire mission could be jeopardized by 
an error in a  command  sequence pertaining to any of these 
areas. For example, the June 1998 loss of contact with the 
Solar  and Heliospheric Observatory (SOHO) spacecraft is 
believed to  have involved “errors in preprogrammed 
command  sequences“ [ 151 (fortunately, contact has  since 
been re-established). 

3.2. Automated Verification of Plans’ Temporal 
Constraints 

The rapid analysis approach of the first pilot study was 
identified as  having potential application to V&V of DS- 
1’s planner.  However,  the first pilot study had examined 
traditional design information (interface diagrams and  test 
logs), so there was uncertainty as to 
whether  the same approach  would 
work  for  the  planner‘s output (i.e., 

A second concern was motivated 
by the critical resource of planner 
experts’ time.  The  first  author,  who 
was not a  planner expert, had  done 
the V&V research. Development of 
an automated plan checker would 
clearly require  some investment of 
time by the  planner  experts - but 
how  much? 

A pilot study  to investigate this 
potential was conducted. It sought  to 
answer two questions: 

Could  the  database- 
based  analysis  approach  be 

plans). 

rapidly  applied to automate  checking  the 
planner’s  generated plans against its temporal 
constraints? 

Could this be  done without a  large 
investment of time by planner  experts? 

We entered into this study with a reasonable 
expectation of success. The  planner  has to be  able to 
generate plans; its constraint language is crafted to 
simultaneously ease the expression of certain constraints, 
and limit the form of expression to those that it can readily 
handle. Conversely, the  database  only  has to be able to 
evaluate queries about  a specific set of data, a  far easier 
task than  the search-intensive task of planning. The 
database query language is an extensible, general-purpose 
language and so should be  capable of straightforwardly 
expressing  the planner’s constraints.  The relative 
computational simplicity of checking vs. planning (an 
instance of Blum’s notion of “simple  checker” [ 161) also 
suggested that the development of a sufficiently efficient 
checker would not itself become  a large development 
effort. 

Figure  2  shows  the architecture of the approach 
followed in this second pilot study. 

As before, it is organized into four main stages: 
1. Creation of database  schema  to represent the plan’s 

activities. This was  confirmed to be  a straightforward, 
manual  task. 

2. Loading the database with plan activities. This was 
made  a completely automatic  step in this pilot study. 
The  amount of effort to do this  was small, in part 
because both planner  and  database  happened  to be 
implemented in the  same  programming language 
(Common Lisp). Had there not been this fortuitous 
coincidence of a  common implementation language, it 
would have been necessary to develop code to parse 
and translate between linguistic forms. At worst, this 
would  have been a modest standard programming 
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task. 

3 .  Translation of constraints. Representative planner 
constraints were selected for hand-translation into the 
equivalent database queries.  The study revealed 
translation to  be feasible, although a somewhat 
detailed process (see  Appendix  A). 

4. Analysis. As before, analysis was automatic, yielding 
reports of confirmations and  anomalies. Importantly, 
this study confirmed  that  the database approach 
scaled sufficiently well to efficiently analyze 
representative plans. (The study used actual plans 
produced during test  runs of the DS-1 planner;) 

3.3. Conclusions drawn from second pilot study 

The study answered affirmatively its first question. It 
demonstrated the feasibility of automating checking of 
plans. This was  recognized to  be an onerous task to 
perform manually, and yet  thorough  checking of plans 
dictated that it be done (for  more discussion of the 
rationale, see [SI). 

The second question was also  answered affirmatively. 
Interestingly, while the  amount of time expended by 
planner experts on  this task remained well below that 
expended by V&V expert, it was noticeably higher than 
had been the case for  the  first  pilot study. Generally, we 
attributed this  to the need to delve into more application- 
specific details, resulting in the  need for more coaching of 
the V&V tool expert by the spacecraft planner experts. 

Illustrations and further discussion are presented in 
Appendix A. 

4. Development of analysis tool 
The success of the second pilot  study led to the  next phase 
- a commitment to  develop an analysis  tool that would be 
used during testing of the planner by the planner experts 
themselves. While this might appear  to  be just a small 
extension of the  previous 
phase, there were several 
important ramifications of this 
transition from pilot study to 
actual development: 

0 Reliance  upon the result: 
The pilot shadowed the 
actual  spacecraft 
development effort, but did 
not promise to yield results 
upon which that development 
effort would rely. Indeed, a 
valid result of the pilot study 
could have been that  the 
approach was infeasible. In 
contrast,  this  phase 
committed to the 

development of a  tool that the project would rely upon 
during  testing. 
The positive results of the pilot studies  were necessary 
precursors to this commitment. Additionally, our 
realization that the analyzer employed an extensible, 
general-purpose language gave us a  justification of why 
we  could extrapolate those positive results to  the entire 
planner constraint language. 

0 Developer and  end-user different people: The pilot 
study tools  were developed primarily by the V&V 
expert,  and used by that same person. In contrast,  this 
phase committed to the development of a tool that would 
be applied by the planner experts with little, if any, 
involvement of the V&V expert during use. 
This motivated two extensions  to  the approach 

. demonstrated in the second pilot  study:  (i)  automating 
the translation from planner constraints  into  database 
queries, and (ii) rendering the  outputs of the analysis 
step in terms understandable by the  planning experts. 

0 End-user  agenda: the DS-1 planner experts 
constructed an agenda of capabilities they  desired of the 
to-be-developed tool. This featured  a prioritized list of 
capabilities, such that the capabilities to be developed 
sooner would be  the  ones they predicted would be of 
more value  to  them. 
The preceding  pilot  studies  had helped by providing 
illustrations of the kinds of analyses that could be 
accomplished  employing this approach. The fact that 
those illustrations were in terms of DS-1 specific 
information contributed to their  (the planner experts) 
ability to see  its potential. They were  thus  able  to 
formulate an agenda  at  this stage, supplanting  what  was 
previously the V&V tool expert’s guess as to what 
analyses  might  be interesting and/or valuable. 

The architecture of the system developed in this phase 
is shown in Figure 3 .  For the remainder of this  paper we 
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will refer  to  this system as  the  “planchecker”. It has  the 
same  stages  as the second pilot study, but with some 
additional capabilities: 

Additional  analyses: the  planner  experts  asked for 
further analyses beyond temporal constraints, notably 
typechecking of plan elements, and cross-checking of 
plan activities against their rationale (information on 
which is included in the  generated  plans). These 
required loading additional information from  plans into 
the database, and  development of additional database 
queries. 

0 Automatic  translation: there  were  over 200 
temporal planner constraints (counting  each lowest-level 
clause  as  one constraint). Based on the observations of 
the second pilot study, we  recognized  that manual 
translation of the whole set would be  a  tedious task. 
Worse yet, we expected the  set of planner constraints to 
grow  and  change  over time. In keeping  with our overall 
goal of judicious use of automation, it was decided build 
an automatic translator that would  take any constraint 
expressible in the planner language and generate the 
equivalent database query. 

0 Extended  output: the planner experts wanted the 
query  results to report more than simply “OK’ when a 
plan passed the checks. In essence,  they wanted a 
justification for why a temporal constraint was satisfied. 
For  example,  a constraint that  says every SEP-thrusting 
interval is followed by an SEP-idle interval would be 
justified by listing, for each  SEP-thrusting interval, the 
specific SEP-idle interval found to satisfy the constraint. 

Coverage  analysis: the planner experts  also wanted 
to  know which of the planner  constraints  had been 
exercised in the plan. For example,  only  plans that 
involved intervals of  SEP thrusting  would exercise a 
constraint of the form “every thrusting interval must 

7, . . .  . 

4.1. Insights gained from development experience 

The develor>ment effort did indeed culminate in the 

planchecker tool  (use of which is discussed in the  next 
section). We therefore confirmed the validity of the 
conclusions  drawn from the second pilot study. We  also 
gained some  further insights. These fell into two key 
areas: 

The  second pilot study  had suggested that the 
translation from planner constraints to  database  queries 
would be straightforward. In practice, automating  the 
translation of the  full planner language turned out  to  be 
more complex than the pilot study had indicated (see 
Appendix  B for examples). While a procedural approach 
to  programming the planchecker’s translator sufficed to 
meet  the  development goals, we  concluded  that 
translation warrants further attention. We will return to 
this in Section 6, Lessons Learned. 

0 In practice, testers need analysis results with  more 
content and structure than simply “pass” or “fail”. 
Again, details  can be found in Appendix B, and 
discussion is deferred to Section 6. Lessons Learned. 

5. Use of analysis tool 
The planchecker was used by the second author  (a 

planning expert) during testing. Interaction with the V&V 
expert was not required during  this phase. 

The  planchecker was applied to check each plan 
generated. Its results  were accumulated alongside other 
statistics about  the plan generation, e.g., how long it took 
to  generate  the plan, how much memory was required  to 
do so. It was easy to apply in “batch mode” to  a  whole 
series of plans. It was tolerably efficient, taking  on  the 
order of 2 minutes to complete the checking of a  typical 
plan. 

Over  the  course of use, several sets of changes  were 
made to the planner constraints. Re-translating the entire 
set of constraints, to generate a new instance of the test 
oracles, easily accommodated these changes. On  these 
occasions  the V&V tool expert was on hand.  The re- 
translations went  smoothly, with only one instance of the 
need to step in and make  a corrective modification. There 
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were  even  changes  to  the plan format, in response to 
which  the V&V tool expert had to  (manually)  adjust the 
corresponding portions of the planchecker system. 

The second author (a spacecraft planner  expert) 
extended the planchecker in a particularly interesting 
manner. On occasion, the writers of planner  constraints 
had  found it necessary to manually decompose  a fairly 
obvious constraint that they want  the  plans to exhibit into 
a set of constraints that the planner would accept, and that 
in combination would achieve the original constraint. The 
need to  do this stemmed from the limited  forms of 
expression allowed in the planner constraint language. 
Because  the  database query language was not so tightly 
constrained, it was often possible to  hand-express  the 
original constraint into a single database query. This could 
then be applied to automatically check plans.  Doing so 
gives increased confidence in the validity of their  manual 
translation of the original constraint into multiple planner 
constraints. Figure 4 shows the  architecture of this 
extended use of the planchecker. 

The implications of this are twofold: (1) a planner 
expert was able  to master the use of the database  language 
and the special-purpose constructs added to represent and 
reason about plans. Seeing familiar examples  (translations 
of the  standard constraints) helped in achieving  this level 
of understanding. (2) the planchecker architecture 
facilitates such extensions - specifically, automatic 
loading of plans into the database, and automatic 
evaluation of database queries, can both be reused. (Of 
course, the translator from planner constraint language 
could not be reused, because the original constraints  were 
not  expressible in that language.) The net  result is extra 
validation at the cost of very little extra time  and effort. 

6. Lessons learned 
The lessons we draw from this  experience  are 

presented next, beginning with those  related to general 
software  engineering principles, followed by those 
specific  to V&V. 
Software  Engineering  Lesson 1: Pilot Studies 

Our experience re-iterates  several  well-understood 
virtues of pilot studies  as a precursor to actual 
development. 

Pilot studies  provide  evidence of feasibility, serve as 
prototypes  and yield examples, which inspire suggestions 
for  extensions,  fhrther applications, etc. 

In addition,  we found it useful to formulate  a 
justification of why the pilot study approach would extend 
to the full problem. Such  a  justification  nicely 
complemented  the  evidence provided by the pilot studies’ 
specific cases. 
Software  Engineering  Lesson 2: “On-Demand” 
Knowledge Acquisition 

When domain experts’  time  is a critical resource, 

follow an  “on-demand” policy of knowledge  acquisition. 
At the start of the project the V&V expert lacked a 

complete and fully documented specification of the task 
(i.e., plans and  the  planner language). Furthermore, the 
domain experts’ time was very limited. In response, we 
followed an “on demand’ approach to knowledge 
acquisition, where the V&V expert would proceed as far 
as possible before  making  the next enquiry of the planner 
experts. This  made  good use of the planner experts’ 
limited time  and availability, since it kept the sum total of 
their time small, consumed it in small chunks, and could 
be done asynchronously (e.g.,  via email exchanges, 
supplemented by brief telephone calls). 

We benefited from the existence of numerous sample 
inputs (plans and planner constraints). Also, the nature of 
the task clearly circumscribed  the  areas that the analysis 
expert would have to master. 

We found it useful to work from an example plan that  a 
planner expert had  already vetted as being correct. If  the 
planchecker reported faults with such a plan, the V&V 
expert would know that most likely there was an error in 
his  own understanding, or his  coding of the planchecker 
itself. Any  remaining anomaly that the V&V expert could 
not resolve would then be  a plausible candidate  for  a 
genuine plan anomaly,  something the plan expert was very 
interested in! 
V&V Lesson 1: Encourage and Use Redundancy 
and Rationale 

V& V can make good use  of  redundancy  and  rationale, 
to increase  assurance  in  the V& V results,  and to assist  in 
the  development  of the V& V technology itseg 

Each plan generated by the spacecraft planner contains 
both a schedule of activities, and a rationale relating those 
activities to  the  constraints taken into account in their 
planning. Checking both of these might appear redundant 
- surely what really matters is whether or not  a plan 
satisfies all  the  constraints. Nevertheless, we  found  this 
redundancy to  be  useful in two ways: 
1. The planner experts gained additional assurance that 

their generated plans  were  correct, in particular, that 
they generated the “right” results “for  the right reasons.” 

2. The V&V tool  expert  made use of the redundancy to 
extend (and  debug)  his understanding of the task. Every 
constraint that  the planchecker identified as  being 
involved had  to  be identified in the plan’s rationale, thus 
forcing  the  planchecker  to be complete and correct in its 
treatment of rationales. Likewise, every constraint 
mentioned in the rationale had to  be seen to  be involved 
by the planchecker, thus forcing  the planchecker to  be 
complete  and  correct in its  treatment of constraints. This 
helps  assure  that the planchecker is not reporting “false 
positives” (plans judged  as correct which are actually 
incorrect). [2] describes false positives  as  more  serious 
than false negatives. He suggests “. . .a thorough system 
of document  reviews ... can mitigate  the risk of these 



false  positives.”  Our  experience  indicates  that  machine- 
generated  rationale  can  provide  a  basis  for  automating 
some of  this  review  process. 

V&V Lesson 2: Database-based Analysis 
The  use of a database  as  the  underlying  analysis 

engine has practical applications  and  benefits. 
Based on the  first of our  pilot  studies we had  made  the 

argument  that  database-based  analysis  was  suited to 
“lightweight” V&V [7]. The  success  of  this  whole  effort 
strengthens  our  belief in this  position, and highlights  some 
further  benefits. 

The  database  approach  suggests  a  natural 
decomposition of the  problem  into:  translating  the V&V 
conditions  into  database  queries,  loading  the  data into the 
database,  performing  the  analyses, and generating  the 
reports.  This  simple  architecture  nicely  separates  the  key 
steps.  For  example, in response  to  a  change in format  of 
plan  structures it sufficed  to  modify  the  planchecker’s 
database  loading  portion.  Also,  this  architecture  facilitated 
the  planner  experts’  extended  use  of  the  planchecker  (i.e., 
their  checking  of  complex  conceptual  constraints by 
manually  expressing  them as database  queries). 

The  database  itself is used  as  intermediary  between 
analysis  and  report  generation  steps.  The  planchecker 
places  analysis  results back into  the  database,  alongside 
the  original  data  (plans)  from which those  results  are 
derived.  Thus  the  report  generation  phase  has  uniform  and 
simultaneous  access to both kinds  of  data  regardless of 
source,  considerably  facilitating  the  report  generation  task. 
V&V Lesson 3: Analysis Results Need Structure 

Test  oracles should yield results with far more content 
and  structure than simply ‘passed” or  “jiailed”. 

During  the  pilot  studies it had  sufficed to yield  analysis 
results  with  trivial  structure - they  reported  either  that  the 
object  had  “passed”  the  analysis  test,  or  had  “failed  due 
to.. ..” (with  some  simple  distinctions  among  failure 
cases). 

The  planchecker  development  entailed  the  generation 
of  analysis  results  and  reports  with  considerably  more 
structure to both the  “passed”  and  “failed”  cases.  For 
example,  reports  that  identified which constraints  had  been 
exercised by a  plan,  and  that  distinguished how constraints 
had been satisfied:  those  that  were  wholly  satisfied by the 
plan,  those  that  deferred  some  condition to activities 
beyond  the  plan’s  horizons,  etc. 

We suspect  that  there may be general  principles by 
which  test  oracles  can be built to  yield  such  structured 
analysis  results,  an  area we think  is  worthy  of  further 
attention. 
V&V Lesson 4: Translation is the  key 

Translation between notations is a recurring need, and 
ideally should be done in such a way as to support 
understanding, specljcation and  maintenance by domain 
experts. 

The  planchecker,  and  the  pilot  studies  that  preceded  it, 

made  extensive use of  translation  between  notations.  For 
example,  the  loading of  a plan into the  database  was  a 
simple  translation  from  plan  format into database  schema 
form at. 

In the  pilot  studies, it sufficed  to perform these 
translations  manually,  or  to  develop  procedural-style  code 
to automate  the  translation. In development  of  the 
planchecker,  translation  from  planner  constraint  language 
to  database  query  language  was  also  programmed 
procedurally, but, because  of  the  complexity  of  this 
translation,  this had some  untoward  consequences. 
Notably,  the  procedural  code  was  hard  to  understand and 
maintain. 

We believe  that  for  translation  of  this  complexity,  a 
more  declarative  style  would be superior. In one such 
approach,  translation would be  expressed  as  a  set of 
translation  rules,  executed by a  general-purpose  rule 
engine  (e.g., POPART [17]). We would  hope  that such 
translation  rules  are  readily  created,  understood and 
maintained. 

A desirable  objective is that  planner  experts,  guided by 
the  translations  of  their  planner  constraint  language, would 
readily  see how to  use  and  write  additional  translations. 
Perhaps  they could even go on to use  the  same  approach 
to  extend  the  planner  constraint  language  itself,  i.e.,  to 
automatically  translate  the  formal  expression  of  a 
conceptual  constraint  into  the  set  of  simpler  constraints 
that  the  planner  language  currently  accepts. 

We are  currently  pursuing  approaches  to  development 
and  use of translators.  The  planchecker’s  translation  will 
serve  as  a  challenge  problem  for  this  effort. 

7. Conclusions 
Our  work  follows  the  trend  towards  the  use  of 

automation  for  generation  of  test  automation.  For 
example,  [I41  presents  an  approach to generating  test 
oracles from specifications. [9] present an industrial 
application  feasibility  study  on  automatically  constructing 
testing  software  for  safety  properties.  Efficiency  (and 
therefore  scalability)  of  the  test  oracles  themselves  is  a 
dominant  concern in much of the related work. 
Commonly,  safety  properties  (typically  expressed in some 
form of temporal  logic)  are  turned into finite  state 
machines  whose  construction  ensures  their  efficiency of 
execution  (e.g., [5]). For  our  particular  application,  the 
efficiency  of  the  test  oracles  did  not  turn  out to be a 
driving  concern.  Our  database-based  approach to analysis 
sufficed.  More  important to us was  the  investment of 
effort  that would be  required of our  domain  experts, 
whose  time was in short  supply.  This led us to automate 
the  generation  of  test  oracles  from  a  domain-specific 
representation.  Thus  the  domain  experts’  effort it would 
take  to  construct  that  generator  became  out  dominant 
concern.  Approaches  that  could  reduce  this kind of  effort 
include  the  parameterized  tableaus 141, or  the  algebraic- 



signature based mappings of [13]. We found, however, the 
need to yield needed test results with finer distinctions 
than simply “passed” or “failed.” Information about 
“passed” cases was  useful to for  test  coverage analysis, 
and for ascertaining that the test had been passed “for  the 
right reasons”. Information about “failed” cases was 
useful  to locate the relevant  portions of the plan 
contributing to  those failures, and so speed the domain 
expert in debugging  what was going  wrong in the planner. 

We are not aware of work  on automatic generation of 
test oracles that  supports  this capability. Based on our 
practical experience of application of test oracle 
generation, we  see  the need for  further investigation of 
this area. 
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Appendix A - Details of the second pilot study 
A.l. Example of planner constraint 

The following example of  one of the  simpler plan 
constraints, as expressed in the  planner’s special purpose 
language, will convey a feel for the  challenges  faced in 
this pilot  study: 
(Define-Compatibil i ty 

; ;  Idle-Segment 
(SINGLE ((SEP-Schedule  SEP-Schedule-SV)) 

( Idle-Segment ) ) 
:duration-bounds [l g l u s - i n f i n i t y - ]  

:compat ibi l i ty-spec 
(AND 
; ;  Thrust   and  Idle   segments  must a l l  

(meets 
meet--no  gaps 

(SINGLE 
((SEP-Schedule  SEP-Schedule-SV)) 

http://nrnp.jpl.nasa.gov/dsl
http://nmp.jpl.nasa.gov/dsl/tech/autora.htrnl
http://umbra.nascom.nasa.gov/soho/prelim_and-background_rep


(Thrust-Segment  (?-any-value- 

(met-by (SINGLE 
?-any-value-) ) ) ) )  

((SEP-Schedule  SEP-Schedule-SV)) 
((Thrust-Segment  (?-any-value- 

?-any-value-) ) ) ) ) ) )  
This illustrates several areas  where  knowledge held by 

the  planner  experts  had to be acquired by the V&V expert: 
Overall  application domain  knowledge: “SEP” is an 

acronym for “Solar Electric Propulsion,” the innovative 
engine that provides thrust to DS-1. “Thrust” and 
“ Id le”  are the  two main states  this  engine can be in. 
Knowledge such as  this of the  spacecraft domain 
provided useful intuition to the V&V expert, and this 
second pilot study warranted a  deeper level of 
understanding than had been necessary for  the first pilot 
study. 

Problem-specific  terminology: “SINGLE” has a 
connotation specific to DS-1 ’s planner. It introduces a 
description that matches a  single  interval.  (One 
alternatives is “MULTIPLE,” introducing  a description 
that matches a  contiguous  sequence of intervals). 

Terminological  variants: The overall definition is of 
a “compatibility.” The V&V expert preferred to think of 
this  as  a “constraint,” in keeping  with  the terminology of 
the database tool. Another  example is the 
“?-any-value” term,  which  serves as a wildcard, 
indicating any acceptable parameter  value may occur in 
the corresponding parameter position. Again, the V&V 
expert had the exact same concept, but preferred a 
different syntax. 

0 Confirmation of shared  understanding: there were 
some  areas of shared understanding, but these  had  to  be 
confirmed, not taken for granted.  A  trivial  example is 
“AND”, which in the  above is used to indicate that the 
constraint [compatibility] holds if all of the clauses of 
this AND hold. More interesting are the terms “meets” 
and “ m e t  -by,” which are binary temporal relations 
between intervals, drawn from the work by Allen [l]. 

The net result was  that  the V&V expert required an 
intensive session of coaching on the meaning of the 
planner notations (plans and constraint language) at the 
start of this pilot study, and incremental assistance at 
various points throughout. Overall  this did not amount to 
an undue consumption of planner experts’ time. 
A.2. Example of Translation from  Planner 
Constraint to Database Query 

Consider  the Idle-Segment constraint given earlier. 
Its essential core is the following: 

(SINGLE ( (SEP-Schedule . . . (Idle-Segment) ) 
:compat ibi l i ty-spec 
(AND 
(meets (SINGLE ( (SEP-Schedule . . . 

(Thrust-Segment ( ? ,  ? )  ) ) 

(met-by (SINGLE ((SEP-Schedule . . .  
(Thrust-Segment ( ?  , ? )  ) ) ) 

The  fragments (SINGLE ( (SEP-Schedule . . . 
introduce  descriptions  that  are  to match to activities of the 
SEP  scheduled in the plan. The first such description is of 
an Idle-Segment activity. For every instance of an 
activity in the plan matching that description,  the 
constraint requires that the logical condition (AND . . . ) 
is true. The logical condition is the  conjunct of  two 
clauses. The first says that  the matching instance meets a 
Thrust-Segment activity, i.e., the  end-point of the 
Idle-Segment activity exactly coincides with the start 
point of some Thrust-Segment also in the  plan. The 
second says that the  matching instance is met-by a 
Thrust-Segment activity, i.e., the start point of the 
former exactly coincides with the end point of  the latter 
Pictoriallv. 
Thrust-Sqrent Thrust-Sqrent Idle-Sqrent 

For translation, this is split into  two  separate 
constraints, one  for each clause of the  conjunct.  This 
allows  the  checking  to  be conducted separately for each 
conjunct, so that any anomaly in a plan can be  narrowed 
down as much as possible. The translated form of the first 
such conjunct  looks close to the following (it has been 
tidied up slightly for presentation purposes): 
( A  ( x )  (IMPLIES 

( a c t i v i t y - i n - p l a n  x  Idle-Segment 

(E  ( y )  (AND ( a c t i v i t y - i n - p l a n  
SINGLE SEP-Schedule) 

Thrust-Segment SINGLE SEP-Schedule) 
(meets x y )  ) ) ) ) 

A and E are  the database’s notations  for  the logical 
concepts for-all and exists. IMPLIES and AND have  the 
standard logical meaning. a c t i v i t y - i n - p l a n  is a 
ternary relation (defined  for plan checking) that relates an 
activity name (e.g., Thrust-Segment) to  a  keyword 
(e.g., SINGLE) and schedule (e.g., SEP-Schedule). 

meets is a binary relation (again, defmed  for plan 
checking) that relates two activities if and only if the  end 
point of  the first coincides exactly with the start point of 
the  second. 

For  this pilot study, some of the more complex  planner 
constraints were also selected for hand-translation. Their 
additional complexity stemmed from references  to 
activities’ parameter  values. For example, a constraint that 
says  that  every Max-Thrust-Time interval whose 1’‘ 
parameter is 1 0 0  must end an 
Accumulated-Thrust-Time interval whose 
parameters are respectively 100,  0 ,  the  same  value  as 



Max-Thrust-Time interval’s znd parameter,  and 
WHILE-NOT-THRUSTING. 
Appendix B - Details  of  the planchecker 
development 
B.l. Automating the translation from  planner 
constraints to  database queries 

The  hallmark of this task  was  the  need to deal  with 
many  small  (and  to  the V&V tool expert  often surprising) 
details. Most  commonly,  these  were details of  the plan 
constraint  language that the V&V tool expert  had  not 
encountered earlier. The  representative  sample  of 
constraints  hand-translated in the  second pilot study  did 
not  cover  the full  range  of constraint language constructs. 
The  discovery  of  these  came  to light when  the partially 
developed  planchecker  was  applied to increasingly  more 
of  the entire set of DS-I constraints, and to increasingly 
many  of the plans that had  been  generated.  They 
manifested  themselves in one  of three ways: 
0 Error  (break)  during  translation,  loading or 

analysis. For  example, if the constraint translator 
encountered  a  variable in a  location  where it expected  a 
constant.  Generally,  these  were  easy to find  and 
understand.  A  break in the  middle  of  analysis  required 
some  simple  debugging-like activity to  trace back  to  the 
underlying  discrepancy.  Since the database  was 
implemented on top  of  Common Lisp, the  power  run- 
time  environment available in the  middle of  a break 
made this task fairly simple. 
All  these  cases resulted in a  simple  question that the 
V&V expert  would  ask  of  the  spacecraft  planning 
experts (e.g., “what  does it mean to use  a  variable  name 
as a  range  value  where  normally there is  an explicit 
integer?’) 

False  alarms - spurious anomalies detected  by 
analysis. Often  the  automated steps would  complete,  but 
would  report  a  whole  host  of (as it turned out, spurious) 
anomalies.  The V&V tool expert  generally interpreted a 
large number  of  anomalies to be indicative of  a  flaw in 
his  understanding, rather than  a  grossly incorrect plan. 
Indeed,  genuine  plan  anomalies  were so few  and  far 
between that this was an effective working  hypothesis. 
The crucial issue in these  cases  was  finding  the 
underlying  cause  of  the  spurious  anomalies.  The V&V 
expert  would  spend  time  to  narrow  down  the likely 
cause  of  a  reported  anomaly.  This  culminated in a 
question  to  ask  of the spacecraft  planning experts. For 
example,  suppose this was  the first analysis of  a plan 
that exercised default interval range  values for  one  of  the 
temporal relationships. An  “anomaly” that could  be 
traced  back  to  one  of  these defaults would  be indicative 
of  a  misinterpretation  of  what  the default should  be.  The 
V&V expert  would  then  know  to  ask  a specific question 

about that default value. 
This  was  a  somewhat  labor-intensive  process for  the 
V&V tool expert. Its benefit  was that it ensured that the 
planner experts’ (very limited) time  was  not  squandered 
unnecessarily. 

0 False  positives - failure to detect  anomalies. The 
surprises that were  hardest  to  recognize  and  understand 
were  those  concerning failure to detect anomalies. 
The  redundancy  of  the  information in plans  was 
especially  useful  to  help  detect  these cases. See V&V 
lesson 1 (in section 5) for discussion  of this issue. 
Additionally,  the V&V tool expert  followed  the 
traditional approach  of  seeding  genuine  plans  with 
deliberate errors, and  observing  whether  the analysis 
caught  them. 

B.2. Structure analysis results 
The  need  to structure analysis results to be more  than 

simply  “pass” / “fail” was  a  strong  theme  of the 
planchecker  development.  Some  examples  of  the  need for 
this are as follows: 

All  the DS-I planner constraints take  the overall 
form: for every activity-1 that matches  description-1 
there exists an activity-2 that matches description-2. A 
constraint of this form is trivially satisfied if the  plan 
contains no activities matching description- 1. The 
planchecker  separates trivial and non-trivial cases in its 
reports of constraint satisfaction. 

0 The DS-1 planner  generates  plans for a  segment  of 
the entire mission (e.g., one  week).  Thus  a  plan is 
bounded  within  some  “horizon”- it has  a start and an 
end.  Yet,  the constraints may  extend  across this planning 
horizon.  Such an instance is reported as a special kind  of 
constraint satisfaction in which the plan satisfies the 
constraint within its horizon,  but  defers  some residual 
checking  for the next plan. The details of all such 
deferred  checks  are  included  within  the  planchecker’s 
report. 

0 In  an early version  of the planner,  a  few  of the 
constraints referenced  information that is not  stored in 
plans. In  essence, this external  information  directed 
which  one of several constraints is to  apply.  The 
planchecker’s constraint translations handle  these 
circumstances by checking  each alternative. If all fail, it 
is  an anomaly. If the  plan is found  to satisfy one  of  the 
alternatives, again, a special kind  of constraint 
satisfaction is reported,  which  included the deduction of 
what  the  external  information  must  be to direct the 
choice  of the satisfied constraint. 

The details are  domain-specific,  but  we  see  a  recurring 
need to make distinctions among classes of  “pass” reports, 
and structure the analysis results accordingly. 


